
Implementaron :
import nvmpy as np
from sHearn .

model
- selection import LeavePOut

X = np . array KC 1,23 , [3,43 , CS.6317,833)
y = np . array (C1 ,2,3 ,

43)
lpo = LlavePOutll

for train - Index ,
test

_
index in lpo . splitlxl :

print (
"

TRAIN :
"

,
train - index

,

"

TEST :
"

,
test- Index)

X.train = Xltrain- indexa
,
Xltest

-
index]

Y_ train
'
K test

, y _ test
= yltrain- indexes , yCtest- index

Stratified teFolds Is a variaron of the standard kfold CU
teohnique which is designed to be effedive in such cases of
target imbalance .

All mentioned about K-Fold W is true for Stratified k-Fold .

Algorithm
1. Pick a nvmber of folds - h
2. Split the dataset into kfolds .

Each fold must contar approximately
the same percentage of samples of each target class as the
complete set.
3. Goose A- 1 folds which will be the training set .The remaining
fold will be the test set.
4.Train the model on the training set.The remaining fold Will be
the test set

.

5. Validale on the test set
.

6. Save the result of the validaron .

7. Repeat steps 3-6 k times .
Each line use the rernaining fold

as the test set . In the end , you should have validated the
model on every fold that you have .

8.To get the final score average the result that you got on step 6.



Implementaron :
import nvmpy as np
from sHearn .

model
- selection importstratifiedkfold

X = np . array KC 1,23 ,
[3,43

,
[ 1,27

,
[3,433)

= np . array (CO ,0,1 ,
13)}kf --Stralifiedkfoldln - splits = 2)

for train - Index ,
test

_
index in skf . splitlx, y) :

print (
"

TRAIN :
"

,
train - index

,

"

TEST :
"

,
test- Index)

X.train = Xltrain- indexa
,
Xltest

-
index]

Y_ train
'
K test

, y _ test
= yltrain- indexes , yCtest- index

Repeated k-Fold Cross-validaron⇒ Is probabby the most robustofalla
techniques .

It is a variation of kfold but in the Case of Repeated k-Folds
k is not the number of folds .

It is the number of times we train the model .
Repeated kfold has clear advantages over standard k-foldal.fi rstly ,

the

proporlion of train Itest split is not dependent on the number of ilerations .

Secondly , we can even set unique proporlions for every iteración .

Third ly ,
random selection of samples from the dataset makes Repented k-Fold eren
more robust to selection bias.

Still
,
then are some disadvantages .

b-Fold Al garantees that the model
Will be testea on all samples, whereas Repeated A-Fold is based on
random ization which means that some samples may rever be selected
to be in the test setatall

.
At the same time

, some samples night be
seleded multiple times .

Algorithm
1. Pick k - a number of times the model will be trained .

2. Pick a nvmber of samples which will be the test set.
3. Split the dataset .

4.Train on the training set . On each ileralion of cross- validaron ,
a new model must be trained

.

5. Validate on the test set .
6. Save the result of validaron .

7. Repeat steps 3-6 k times .
8. To get the final score average the result that you got on step 6 .



Implementaron :
import nvmpy as np
from sHearn .

model
- selection inport Repeatedkfold

X = np . array KC 1,23 ,
[3,43

,
[ 1,27

,
[3,433)

= np . array (CO , 0,1 ,
1J)

Ítkf = Repeatedkfoldln . splits =2 ,
n - repeat =2 ,

random
-

State = 421

for train - index ,
test

_
index in rkf . splitlxl :

print (
"

TRAIN :
"

,
train - index

,

"

TEST :
"

,
test- Index)

X.train = Xltrain- indexa
,
Xltest

-
index]

Y_ train
'
K test

, y _ test
= yltrain- indexes , yCtest- index

Nested k-foldcross-validation.is Unlike the other al techniques .
which

are designed to eraluale the quality of an algorithm ,
Neasted A-Falda

is the most popular way to tune the parameters of an algorithm .

This technique is computionally expensive because thoughout steps 1-10
plenty of models should be trained and eralvaled .

Algorithm
1. Pick k - a number of folds , for example , 10 - let's assume that we'

ve picked
this nvmber .
2.Picha parameter p .

Let's assume that our algorithm is Logistic Regresión
and p is the parameter p = h

'

ll '
,
12 :

'elaslicnet: '

none
'3

3.Divide the dataset into 1014 folds and reserve óie of them for test .
4. Reserve One of the training folds for validation .

5. For each value of p train on the 8 remaining training folds and
evaluarte on the validation fold .

Now you have 4 measurements .

6. Repeat steps 4-5 9 times .
Rotale which training Gold is the

validaHon fold .
You now have 9×4 measurements .

7. Choose p that minimizo the average training error over 9 folds .

Use that p to evaluase on the test set .
8. Repeat 10 times from step 2. using each fold in turn as test fold
9. Save the mean and standard denalion of the evaluador measure
over the 10 test folds .
10

.
The algorithm that performed the best was the one with the best

average out - of -sample performance aCross the 10 test folds .

Implementation
There is not built.in method in sklearn

.



Complete Cross-Validación -is Is the least used W
.
The general idea is that we

chocase a number of K- the length of the training set - and validate on
every possible split containing k samples in the training set .

Algorithm
1. Pick a number k- length of the training set.
2. Split the dataset .
3.Train on the training set .
4. Validate on the test set

.

5. Save the result of the validaron .
6. Repeat steps 2-5 Cn

k limes
7.To get the final score average the result that you got on step 5 .

DL⇒ tricky because not of the al techniques require training the
model at least a couple of times

Veras → allows to pass one of two parameters for the fit function that
performs training .

1. validadon
- split : percatase of data that should be held out for

validaron
2. validaHon

-

data : a tiple of CX, y) which should be used for validadon
This parameter overrides the validados -split parameter which means you
can use only one of these parameters at once.

Pytorch and MxNet ⇒ same approach They also suggestsplitling thedataset
into three parts .
1.Training : a part of the dataset to train

23
.

.

ValidaHon : a part of the dataset to validaH on while training .

Testing : a part of the dataset for final validaNon of the Model .




